Novel 3D culture system for study of cardiac myocyte development.
نویسندگان
چکیده
Insufficient myocardial repair after pathological processes contributes to cardiovascular disease, which is a major health concern. Understanding the molecular mechanisms that regulate the proliferation and differentiation of cardiac myocytes will aid in designing therapies for myocardial repair. Models are needed to delineate these molecular mechanisms. Here we report the development of a model system that recapitulates many aspects of cardiac myocyte differentiation that occur during early cardiac development. A key component of this model is a novel three-dimensional tubular scaffold engineered from aligned type I collagen strands. In this model embryonic ventricular myocytes undergo a transition from a hyperplastic to a quiescent phenotype, display significant myofibrillogenesis, and form critical cell-cell connections. In addition, embryonic cardiac myocytes grown on the tubular substrate have an aligned phenotype that closely resembles in vivo neonatal ventricular myocytes. We propose that embryonic cardiac myocytes grown on the tube substrate develop into neonatal cardiac myocytes via normal in vivo mechanisms. This model will aid in the elucidation of the molecular mechanisms that regulate cardiac myocyte proliferation and differentiation, which will provide important insights into myocardial development.
منابع مشابه
O-16: Comparison of Pre-Antral Follicle Culture Development during 2 Dimensional and 3 Dimensional Culture Systems
Background: Setting up an in vitro follicle culture system that resembles in vivo ovary condition has high value in research. Additionally, expression evaluation of folliculogenesis involved genes could lead us to the designing of better culture system. Materials and Methods: ovaries of 12-day-old female NMRI mice were removed, 100-130 μm pre-antral follicles were mechanically isolated from fre...
متن کاملI-5: Multicellular Human Testicular Organoid: A Novel 3D In Vitro Germ Cell and Testicular Toxicity Model
Background Background: Mammalian spermatogenesis is regulated through paracrine and endocrine activity, specific cell signaling, and local control mechanisms. These highly specific signaling interactions are effectively absent upon placing testicular cells into two-dimensional primary culture. The specific changes that occur between key cell types and involved spermatogenesis signaling pathways...
متن کاملMicrodomain heterogeneity in 3D affects the mechanics of neonatal cardiac myocyte contraction.
Cardiac muscle cells are known to adapt to their physical surroundings, optimizing intracellular organization and contractile function for a given culture environment. A previously developed in vitro model system has shown that the inclusion of discrete microscale domains (or microrods) in three dimensions (3D) can alter long-term growth responses of neonatal ventricular myocytes. The aim of th...
متن کاملApplication of novel anodized titanium for enhanced recruitment of H9C2 cardiac myoblast
Objective(s):Anodized treated titanium surfaces, have been proposed as potential surfaces with better cell attachment capacities. We have investigated the adhesion and proliferation properties of H9C2 cardiac myoblasts on anodized treated titanium surface. Materials and Methods: Surface topography and anodized tubules were examined by high-resolution scanning electron microscopy (SEM). Contro...
متن کاملThe Different Mechanisms of Action Potential Propagation in the Heart
It was thought previously that cardiac muscle gap junctions provide low-resistance connections between cells and permit the local-circuit current to flow. Some evidences show that myocardial cells may not require low-resistance connections for successful propagation of the action potential (AP). It seems that some other types of mechanisms must be involved in AP propagation. In this article, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 285 2 شماره
صفحات -
تاریخ انتشار 2003